Request For Demo     Request For FreeTrial     Subscribe     Pay Now

Finland Project Notice - Smart Hybrid Materials For Opto(Electro)Ionics


Project Notice

PNR 65174
Project Name Smart Hybrid Materials for Opto(electro)ionics
Project Detail Hybrid materials for smart devices and nanotechnologies A growing number of recent innovations and technologies have created a demand for intelligent and sustainable materials capable of adapting to essential operating conditions. Nevertheless, the inability of molecular machines to provide these features in a solid state has impeded their utilisation. Funded by the European Research Council, the SmartHyMat project seeks to address this challenge by creating a solution for advanced nanotechnology. The project focuses on developing hybrid solid-state architectures with novel lead-free hybrid halide perovskites that will serve as scaffolds for stimuli-response systems, leading to a new generation of smart and sustainable technologies. Modern technologies increasingly require smart and sustainable materials that adapt to their operating conditions in functional devices, such as those for efficient energy production and nanorobotics. Their development requires controlling complex material functions in response to external stimuli. While molecular machines demonstrated remarkable potential in a wide range of stimuli-responsive functions, this remains a challenge in the solid state, hampering their use in functional devices. Overcoming this necessitates an amphidynamic platform that is ordered yet permits molecular motion without compromising stimuli-responsiveness, while offering the ease of processing for device fabrication. SmartHyMat will address this enduring challenge by relying on the unparalleled capacity of hybrid halide perovskites to act as unique scaffolds for stimuli-responsive systems. These soft yet crystalline materials recently emerged as one of the leading semiconductors for thin-film optoelectronics, featuring mixed ionic-electronic conductivities and extraordinary performances in solution-processable devices. While their operational stability can be enhanced by incorporating organic moieties, their functionality remains limited to electronically inactive off-the-shelf materials. This project will realize the innovative potential of hybrid perovskites in adaptive nanotechnologies through molecular design, synthesis, and characterization of stimuli-responsive systems in hybrid solid-state architectures. Their potential will be demonstrated in unprecedented smart devices for power generation, memory, and actuation relevant for automation and nanorobotics. This will involve optoelectronic, such as smart solar cells, as well as optoionic devices exploiting mixed conductivities, including artificial synapses and neuromuscular junctions. The focus will be on environmentally friendly materials, setting the stage for an entirely new generation of smart and sustainable nanotechnologies.
Funded By European Union (EU)
Country Finland , Western Europe
Project Value EUR 2,123,241

Contact Information

Company Name TURUN YLIOPISTO
Web Site https://cordis.europa.eu/project/id/101114653

Tell us about your Product / Services,
We will Find Tenders for you