Subscribe     Pay Now

Denmark Project Notice - Tracking The North Atlantic Water Circulation During The Last Glacial Period Using Multi-Proxy Approaches


Project Notice

PNR 65014
Project Name Tracking the North Atlantic water circulation during the Last Glacial period using multi-proxy approaches
Project Detail Ocean circulation is a key regulator of climate that driven by both atmospheric and thermohaline processes. The Labrador Sea holds a complex mixture of water masses and plays a crucial role in North Atlantic Deep Water formation and the Atlantic Meridional Overturning Circulation, and thus for global ocean circulation. However, the mechanisms of the Labrador Sea Water formation and its interactions with upper North Atlantic Deep Water remain largely unknown. Understanding the water formation of the Labrador Sea Water and ocean circulation in the North Atlantic region in historical time by using proxy reconstruction data is crucial for benchmarking and understanding the present and future variations using model simulations. The purpose of this proposal is to provide information on the evolution of the North Atlantic intermediate water formation and the impact of changes on ocean circulation in the Labrador Sea during several cold periods including the Last Glacial Maximum, understanding of North Atlantic water inflow, the Labrador Sea deep water ventilation conditions and formation respond to the fundamentally different glacial cold events. By combining benthic foraminiferal morphology and geochemistry data, and other existing proxies, this project will discover the link between shell morphology and multiple stresses, and quantitatively evaluate the impact of changes in the ocean circulation on marine ecosystems. The project aims to apply a multiproxy approach including the application of foraminiferal morphology and geochemistry to reconstruct the seawater conditions. I will generate new high-resolution records of changes in subsurface to deep-water formation in the Labrador Sea region to evaluate the impact of changes in ocean circulation and to significantly improve the application of this multiproxy approach. Results from this project will also increase the data window of oceanic circulation for climate model validation.
Funded By European Union (EU)
Sector Railways
Country Denmark , Western Europe
Project Value DKK 214,934

Contact Information

Company Name AARHUS UNIVERSITET
Web Site https://cordis.europa.eu/project/id/101108995

Tell us about your Product / Services,
We will Find Tenders for you