Project Detail |
Fungal mycelium-based innovative sustainable materials
The development of innovative natural-based materials is critical for achieving a circular economy and mitigation of environmental impact. Filamentous fungi can colonise lignocellulosic substrates such as wood and agriculture waste streams, binding the substrate together with elongated mycelium as a natural glue. Recent innovations allow fungal mycelium growth in different lignocellulosic waste streams, resulting in composite materials with a broad spectrum of properties. The Marie Sklodowska-Curie Actions-funded MyBond project aims to provide an in-depth understanding of the adhesion of mycelium to the substrate at the molecular level for further optimisation of sustainable fungal mycelium materials formation.
The development of natural-based materials is crucial to reduce environmental impact and achieve a circular economy. Fungal mycelium has recently achieved significant attention as a new biobased sustainable material. In nature, filamentous fungi colonize lignocellulosic (i.e. plant) substrates such as wood and agriculture waste streams; their elongated mycelium works as a natural glue that binds the substrate together. Taking advantage of this unique binding property, people have developed innovative methods to grow fungal mycelium in different lignocellulosic waste streams resulting in composite products with various forms, densities, and target applications. However, little is known about the fundamentals, especially the essential factors that determine the material properties. This project aims to provide an in-depth understanding of the adhesion of mycelium to the substrate and to use this knowledge to enhance this adhesion to optimize fungal mycelium materials thereby contributing to the EU’s sustainable plan. The project will focus on three different levels: understand filamentous fungi adhesion to lignocellulosic surfaces at the molecular level; improve this adhesion based on the findings; apply this technology to novel fungal mycelium-lignocellulosic-based sustainable materials development. This project will carry out a multidisciplinary study linking molecular and chemical biology to materials science and technology. The transfer of knowledge will benefit both the researcher and the host and further promote mycelium material development. The result of this proposal will be shared with researchers in different disciplines, industrial partners, and the public. It will contribute to EU’s sustainable technology. |