Subscribe     Pay Now

Finland Project Notice - Extending The Perovskite-Inspired Mixed-Metal Chalcohalide Alloy Space For Solar Cells


Project Notice

PNR 64210
Project Name Extending the perovskite-inspired mixed-metal chalcohalide alloy space for solar cells
Project Detail Renewable energies play a central role in the decarbonisation of the energy sector and mitigating man-made climate change. Photovoltaic (PV) technology provides a clean, safe, and affordable renewable source of energy. New photovoltaic materials with high power conversion efficiencies are needed to meet the European Green Deals 2050 targets and to ensure the large-scale deployment of solar cells. An encouraging material class are perovskites, but as they suffer from toxicity and stability problems, this impedes their commercial viability. One promising alternative are mixed-metal chalcohalides (PIMMCHs), which have the potential to overcome these known problems with perovskites and still exhibit good optoelectronic properties, thus making them of interest for PV applications. However this promising class of materials remains widely unexplored. The aim of this project (EXT-PIMMCH) is to expand the material space of PIMMCH compounds and our understanding of this material class. I will explore I) binary and II) ternary PIMMCH alloys in order to identify promising PIMMCH alloys which are suitable for indoor and outdoor PV applications. For this purpose I will use a combination of density functional theory (DFT) and machine learning to accelerate the material exploration. Finally I will identify a few dozen promising PIMMCH alloys for indoor and/or outdoor PV applications to facilitate further experimental research. Also I will study III) the influence of defects such as vacancies, interstitials and antisites on PIMMCH materials using DFT, which can be used to determine the defect tolerance/intolerance of PIMMCH materials. A profound understanding of defects in PIMMCH materials is essential, because they could have a significant effect on the performance of PV applications. Overall EXT-PIMMCH will facilitate the development of efficient, stable and non-toxic PSCs, thus accelerating large-scale commercial adoption of PSCs.
Funded By European Union (EU)
Sector Railways
Country Finland , Western Europe
Project Value EUR 199,694

Contact Information

Company Name AALTO KORKEAKOULUSAATIO SR
Web Site https://cordis.europa.eu/project/id/101152684

Tell us about your Product / Services,
We will Find Tenders for you