Project Detail |
Responsive and smart textiles are a next frontier of research to add new, useful functionality to commodities we already use in our day-to-day lives. By allowing us to replace energy-consuming electronic sensors for detecting or responding to stresses and harmful conditions, they can contribute to a safer, greener, and more sustainable world. The jump from concept to product, however, has been fraught with issues: how can we incorporate novel materials of interest, such as liquid crystals or colloidal suspensions with a liquid armor functionality into fibers that we can then incorporate into textiles? In this project, I will use a microfluidic wet spinning technique I developed to incorporate functionality into fibers made from textile-grade polymers smart, yet comfortably wearable garments. I will focus on two functionalities: responsiveness to volatile organic compounds, enabled by liquid crystals, and responsiveness to ballistic impacts, provided by liquid armor. I will assess the performance of these fibers to the applied stresses as well as incorporate them, using embroidery and weaving, into fabrics and evaluate their performance in prototype wearable garments. |