Project Detail |
The Ohio State University is designing, modeling, and constructing synthetic microbial groups consisting of three bacterial species. Lactic acid bacterium, a carboxydotrophic acetogen, and a solventogenic clostridium are grown in a consortium that produces n-butanol, an advanced biofuel and industrial chemical used in plastics, polymers, lubricants, brake fluids, and synthetic rubber. The bacteria will react with lignocellulose sugars (mainly glucose and xylose) and formate (from CO2 produced by electrochemical reduction) in a biorefinery. This solution will maximize carbon conversion and butanol production with a 100% theoretical product yield and zero or negative CO2 emissions. With a 50% higher product yield from glucose compared with current acetone-butanol-ethanol (ABE) fermentation with corn, biobutanol can be produced at prices that compete with gasoline, bioethanol, and the existing ABE fermentation technologies with greater carbon efficiency.
Potential Impact:
The application of biology to sustainable uses of waste carbon resources for the generation of energy, intermediates, and final products---i.e., supplanting the “bioeconomy”—provides economic, environmental, social, and national security benefits and offers a promising means of carbon management. |