Project Detail |
Stony Brook University aims to significantly reduce compact reactor waste via improved fuel utilization and reduced uranium loading. The team’s solution is a novel microencapsulated fuel form leveraging halide salt sintering of magnesium oxide (MgO), developed under ARPA-E’s MEITNER program to enable advanced moderator technologies with enhanced neutronic performance and temperature stability as a replacement for graphite. Stony Brook will extend the technology to further enhance fuel utilization while addressing the back-end of the fuel cycle by fabricating a low-waste and repository-ready TRi-structural ISOtropic (TRISO) fuel form in which (1) the graphite fuel “matrix” is replaced by the MgO technology and (2) the TRISO-bearing inert matrix fuel is deconsolidated to low-level waste and intact TRISO micro-encapsulations, which may reconsolidated to further increase utilization and deplete transuranic loading or be sequestered to high-level waste.
Potential Impact:
By identifying and addressing challenges at the back-end of the fuel cycle before the deployment of future AR technologies, ONWARDS will: |