Project Detail |
The proposed work involves merging low-valent bismuth catalysis with electrochemistry to unlock eminently sustainable methods for C-C bond formation. The research outlined herein would constitute the first systematic foray into electrocatalytic organobismuth manifolds for the synthesis of organic molecules.
Well-defined monomeric Bi(I) pincer complexes have recently been used to activate redox-active esters and alkyl halides via 1-electron and 2-electron pathways, respectively. In the first section, we propose a systematic electrochemical characterization of several N,C,N-Bi(III) pincer complexes, with particular emphasis on identifying the reversibility and potential of distinct redox states accessible by each complex. The cathodic reduction of Bi(III) species to their Bi(I) counterparts will also be performed in the presence of alkyl electrophiles to afford Bi(III)-alkyl species. The insights obtained from these foundational studies will be applied in the context of developing electrocatalytic manifolds for the C(sp3) carboxylation and C(sp3)-C(sp3) coupling reactions, two transformations that remain challenging even in the context of transition metal catalysis. |