Project Detail |
The University of Illinois will develop a commercial solution, SYMFONI, to estimate soil organic carbon (SOC) and the dynamics of nitrous oxide (N2O) emissions at an individual field level to promote advanced carbon management and sustainability practices in agricultural systems. The solution can be scaled up to perform per-field estimates for an entire region. SYMFONI integrates (1) synergistic modeling of SOC and N2O; (2) use of novel satellite/airborne data and algorithms; (3) innovative sampling of high-resolution, high-frequency soil moisture; (4) development of physics-guided deep learning; (5) mobile sensing of atmospheric inversion (horizontal layers of air that increase in temperature with height) for further uncertainty reduction at the regional scale; (6) a unique data collection effort studying the N2O and SOC hot spots and hot moments; and (7) thorough system uncertainty quantification.
Potential Impact:
Reducing the uncertainty of emissions quantification is critical to realizing the revenue potential of carbon management markets. |