Project Detail |
Honeywell Aerospace and the University of Maryland propose to develop a novel high-voltage 500 kW advanced electric propulsion system (AEPS) with a high efficiency and a high-power density. The system will provide direct drive to the propulsive device without using a torque amplifier for low weight, cost, and volume, and high reliability. The major components, the electric rotating machine (motor) and the motor drive (power and control electronics), will be heavily integrated for better performance, sharing a common chassis and cooling system. The AEPS will include a highly effective and innovative thermal management system. This system will use high-speed air flow from the aircraft propulsor wash to cool the power electronics and the motor via an innovative heat sink integrated into the AEPS housing that minimizes the thermal resistance by using a novel flow distributer geometry and reducing the convective resistance. Other key innovations enable overall machine weight reduction without compromising efficiency, such as the use of high-performance windings, which increases the copper fill factor for increased machine efficiency and thermal and electric conductivities.
Potential Impact:
The ASCEND program has the potential to accelerate innovations and cause disruptive changes in the emerging electric aviation field. |