Request For Demo     Request For FreeTrial     Subscribe     Pay Now

Sweden Project Notice - An Atlas Of Organisation Of Lipids In Extracellular Vesicles To Navigate Their Roles In Cancer Metastasis


Project Notice

PNR 61120
Project Name An Atlas of Organisation of Lipids in Extracellular Vesicles To Navigate Their Roles in Cancer Metastasis
Project Detail It is estimated that up to 90% of cancer deaths are caused not by the primary cancer but after it has metastasised, i.e. spread to other organs in the body, and it is well known that the locations of metastasised tumours are specific to the location of the primary cancer. Communication and transfer of material between cells is a fundamental process in cell biology, for which nature uses extracellular vesicles (EVs). These nanometre-sized vesicles are excreted by cells and contain signature combinations of membrane lipids, nucleic acids, proteins and surface markers. EVs excreted by cancer cells play an important role in communication between tumours and distant organs where metastases can take hold. While more is now understood about the role of EV nucleic acids, proteins and surface markers in these processes, the role of EV lipid composition, and especially the role of asymmetric lipid distribution across the membrane, remains overlooked. I address this fundamental research question by developing an interdisciplinary approach for mapping the asymmetric lipid composition of EVs with varying pro-metastatic nature from a library of cancer cell lines. I will create an atlas of asymmetric lipid compositions of EVs excreted by cancer cell lines, including quantitative data on the asymmetric lipid distribution between the inner and outer membrane leaflets (asymmetric lipid distribution). To study the role of EV lipid composition on selective uptake in cells from the original tumour and pre-metastatic environment, I will apply neutron scattering and super-resolution microscopy techniques. Taken together, the atlas of cancer-derived EV asymmetric lipid compositions that I will develop represents a significant advance to the state of the art, and a ground-breaking combination of cell biology with engineering-based tools for chemical and biophysical in-depth characterisation of complex, asymmetric membranes.
Funded By European Union (EU)
Sector BPO
Country Sweden , Northern Europe
Project Value SEK 2,499,818

Contact Information

Company Name CHALMERS TEKNISKA HOGSKOLA AB
Web Site https://cordis.europa.eu/project/id/101117487

Tell us about your Product / Services,
We will Find Tenders for you