Subscribe     Pay Now

Italy Project Notice - Data-Driven Bioinspired Design Of Fatigue Super-Resistant Structures: Learning By Nature And Flying Into The Future


Project Notice

PNR 55049
Project Name Data-Driven Bioinspired Design of Fatigue Super-Resistant Structures: learning by Nature and Flying into the future
Project Detail Biological material science is a new research topic at the interface of biology and physical science, having a common ground in chemistry, physics, mechanics and engineering. During their evolution, biological materials have developed a unique combination of properties to fulfil specific functions through a series of ingenious and distinctive design elements, evident in different systems created by nature. As an example, butterfly wings have an extraordinary combination of lightness, durability and iridescence. We have merely scratched the surface of this knowledge. Exploring the basis of the unique performance of natural and biological materials, a material science perspective has been widely adopted. However, the study of natural systems considering a structural perspective is still at its early stage and, up to now, we have not fully taken advantage of this potentially unique and immense source of design inspiration, especially in the field of structural integrity and fatigue design. ButterFly is aimed to fill this gap in knowledge making a ground-breaking jump towards bioinspired fatigue design. Fatigue is in fact the most ubiquitous mode of fracture accounting for more than 80% of all in service failures in structural components; however, available design approaches are still deterministic and uselessly repetitive. ButterFly will, for the first time, develop a novel and reliable mechanistic approach able to capture the salient design principles allowing long-term durability of natural systems and will transfer this new fundamental knowledge to design fatigue super-resistant structures. Building upon promising results from my research group, I am convinced that ButterFly will induce an utterly new paradigm-shift in fatigue design inspired by Nature with a considerable impact on industrial design practice, paving the way to a new era of smart and fully optimized fatigue design.
Funded By European Union (EU)
Sector BPO
Country Italy , Southern Europe
Project Value EUR 2,499,811

Contact Information

Company Name UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Web Site https://cordis.europa.eu/project/id/101093897

Tell us about your Product / Services,
We will Find Tenders for you