Request For Demo     Request For FreeTrial     Subscribe     Pay Now

United States Project Notice - Process Intensification Scale-Up Of Direct Lit Electrolysis


Project Notice

PNR 53546
Project Name Process Intensification Scale-Up of Direct LiT Electrolysis
Project Detail For more than 60 years, fusion research and development (R&D) has focused on attaining the required fuel density, temperature, and energy confinement time of the plasma fuel of a viable fusion energy system. Currently, relatively modest investments have been made in the required and equally critical enabling technologies and advanced materials surrounding the plasma fuel. The GAMOW program supports innovative R&D that will help establish both the technical and commercial viability of (i) all the required technologies and subsystems between the fusion plasma and the balance of plant, (ii) cost-effective, high-efficiency, high-duty-cycle driver technologies, and (iii) novel fusion materials and advanced manufacturing of these materials. Project Innovation + Advantages: Direct lithium tritide (LiT) electrolysis uses advanced solid lithium-conducting electrolytes to reduce the complexity and footprint of tritium extraction from breeding-blanket materials, such as lead-lithium, in fusion-energy systems. Savannah River National Laboratory’s new process eliminates the need for expensive equipment like centrifugal systems and molten salts used in other proposed technologies. The process improvements enable the reaction to be performed in existing process vessels such as the blanket buffer tank and reduces the entire tritium-extraction system footprint. This system uses solid lithium ion ceramic conductors that serve as both the electrolyte and separator of the two sides of the reaction. Because the ceramic conductors are ionic and not electrical conductors, the extraction of LiT can be carried out in molten metal without the need for additional salts as electrolytes. The solid-state ceramic electrolyte simplifies the tritium extraction process because it is stable in molten lithium and has a high lithium ion conductivity that enables high electrical efficiency. The simplicity and throughput of the tritium recovery system are significantly improved by direct LiT electrolysis, which will in turn dramatically reduce tritium residence times and inventories within the liquid metal system. This project will scale up the process from the presently demonstrated proof-of-concept scale to an intermediate scale, thus demonstrating viability for further fusion-relevant scaleup. Potential Impact: Successful development of fusion energy science and technology could lead to a safe, carbon-free, abundant energy source for developed and emerging economies.
Funded By Self-Funded
Sector Energy & Power
Country United States , Northern America
Project Value USD 1,500,000

Contact Information

Company Name Savannah River National Laboratory
Web Site https://arpa-e.energy.gov/technologies/projects/process-intensification-scale-direct-lit-electrolysis

Tell us about your Product / Services,
We will Find Tenders for you