Project Detail |
A new generation of organic flow batteries shows promise for energy storage
The EU-funded BALIHT project is designing new redox organic flow batteries that can work at temperatures of up to 80 °C. Researchers claim that the batteries will offer longer duration, higher power and a 20 % higher energy efficiency compared to other organic battery types. The new battery will be based on low-cost, abundant organic molecules that are easily dissolved in water, electrolytes comprising lignin, thin non-fluorinated membranes and carbon electrodes. Redox organic flow batteries are one of the most promising approaches to sustaining a grid powered by the sun and wind, improving grid flexibility and stability and providing high-performance charge points for electric cars.
Redox flow batteries (RFBs) are designed to work up temperature of 40ºC, however, discharging the battery generates heat. A cooling system is required to avoid electrolyte degradation or battery malfunction. Cooling requires energy and reduces the battery global efficiency. Moreover, higher temperatures have advantages: low electrolyte viscosity (less pump energy), better electrolyte diffusion in electrode & increase battery power due to increase electron mobility.
BALIHT project aims to develop a new organic redox flow battery suitable to work up to temperatures of 80ºC, with a self-life similar than current organic ones, but with an energy efficiency 20% higher than current RFB since cooling system is not required, less pump energy & high power.
Redox-active organic molecules with promising prospect in the application of RFBs, benefited from their low cost, vast abundance, and high tunability of both potential and solubility. These organic molecules are more soluble in water, which allows more concentrated electrolyte and increased battery capacity.CMBlu has developed an organic redox flow battery technology that use electrolytes from lignin, thin non-fluorinated membrane, carbon-based electrodes and plastic frames. Lignin is a renewable resource and the largest natural source of aromatic compounds from which efficient electrolytes can be produced.
BALITH concept of organic RFB makes this technology suitable for many applications where the requirements for batteries are more challenging like:
- Smoothing of non-dispatchable renewable power plants (like solar or wind)
- Support for Ancillary services
- High performance electric car recharge points
- Improvement of grid flexibility and stability (at both transmission and distribution level).
- Avoid cooling needs in RFB placed in warm countries (between 40º Latitude North & 40º Latitude South). |