Project Detail |
HESTIA addresses the need for implementing carbon removal strategies by converting buildings into carbon storage structures. HESTIA is also important for nullifying embodied emissions. The majority of these emissions are concentrated at the start of a building’s lifetime and locked in before the building is ever used. This upfront emissions spike equals 10 years of operational emissions in a building constructed to meet standard code, but increases to 35 years for more advanced, higher operating efficiency buildings, and more than 50 years for high-efficiency buildings operating on a lower carbon intensity grid. These time horizons go beyond 2050 climate targets, which means embodied emission reduction strategies are a high priority.
Project Innovation + Advantages:
The University of Colorado Boulder will manufacture and commercialize a net-CO2-storing portland limestone cement using biogenic limestone (CaCO3) produced via photosynthesis that will store more than 275 kgCO2 and cost less than $100 per ton of cement. Most cement-related CO2 emissions are caused by heating CaCO3 to produce calcium oxide (quicklime), which releases CO2 in the process. The proposed technology will produce biogenic CaCO3 using calcifying microalgae that sequester and store CO2 in mineral form through biological direct air capture via photosynthesis and calcification. Using this CaCO3 in biogenic cement production leads to a net carbon neutral carbon cycle.
Potential Impact:
HESTIA projects will facilitate the use of carbon storing materials in building construction to achieve net carbon negativity by optimizing material chemistries and matrices, manufacturing, and whole-building designs in a cost-effective manner. |