Project Detail |
Legacy pipe malfunctions create operating risk and legal liability for utilities, negatively impact system owners’ financial performance, and are costly to gas consumers. Today, repairing legacy pipes involves excavating and replacing them, typically with high-density polyethylene pipe. Replacement costs range from $1-10 million per mile, depending on the pipe’s location (rural vs. urban), complexity of the excavation, and costs for restoring roads. Utilities also incur costs whenever gas service is disrupted for repairs. REPAIR seeks to eliminate the highest cost components, excavation and restoration, by rehabilitating pipes without their removal—in essence, by automatically constructing a new pipe within the old.
Project Innovation + Advantages:
The University of Colorado Boulder will lead a multi-institutional team, including Cornell University, Gas Technology Institute, and University of Southern Queensland, to develop a data-driven framework of laboratory testing and modeling. This framework will enable the gas industry to better evaluate products to rehabilitate cast iron and steel natural gas pipes and enhance their performance and longevity. The objective is to validate a 50-year design life for innovative pipe-in-pipe (PIP) systems by developing numerical, analytical, and physical testing protocols. The process will merge attributes of each approach to deliver a comprehensive framework for PIP technologies composed of a variety of materials and deposition methods. CU Boulder’s framework characterizes failure modes and establishes performance criteria for PIP rehabilitation technologies to support recommendations for PIP material properties suitable for acceptable design-life performance. |