Project Detail |
Geothermal energy is a potentially vast source of clean baseload electricity in the U.S. However, it is difficult and expensive to penetrate the ultra-hard rock formations found at many prospective geothermal sites. Conventional drill bits penetrate ultra-hard rock formations slowly and wear down quickly, which makes the drilling process time consuming and expensive. More economical drilling methods are required to enable access to next-generation energy resources, including geothermal and natural gas.
Project Innovation + Advantages:
The National Renewable Energy Laboratory team will develop technologies and component devices enabling a high-rate drilling method using electric pulses to bore hot, deep geothermal wells. Compared to the softer, sedimentary rock typically found in oil and gas wells, geothermal rock is harder and less porous, and at significantly higher temperatures. These factors generate slow geothermal drilling rates averaging only 125 feet per day compared to greater than 40 times this achieved in sedimentary rock. If successful, the high-rate technology could transform drilling techniques across multiple industries. Project activities will focus on developing and testing pulsed power electronics capable of surviving the high temperatures encountered in geothermal rock. Component development will be carried out with systems integration in mind, enabling a rapid upgrade from a low-temperature rated drilling tool to a high-temperature version.
Potential Impact:
The technology is expected to disrupt the global drilling industry, replacing traditional drilling technologies within 10 years of commercialization. |