Project Detail |
Marine macroalgae, also referred to as seaweeds or kelp, are a group of exceptionally diverse aquatic plants. Macroalgae can be found along nearly all coastlines around the globe and in some cases also in the open ocean. They have traditionally been used for food and feed, as well as fertilizer. In 2016, the world produced approximately 26 million wet metric tons of seaweed, primarily through highly labor-intensive farming techniques. While macroalgae production has increased six-fold over the past quarter-century, the current state of macroalgae “mariculture” is not capable of achieving the scale, efficiency and production costs necessary to support a seaweed-to-fuels industry. Dramatically increasing productivity will require significant advancements in the domestication of macroalgae and new farming technologies. To accelerate the development of critical tools and technologies, the MARINER program is supporting projects in five areas: 1) Integrated Cultivation & Harvest System Design, 2) Critical Enabling Components, 3) Computational Modeling, 4) Monitoring Tools, and 5) Breeding & Genomic Tools. Project Innovation + Advantages: The University of California, Irvine (UC Irvine) will lead a MARINER Category 3 team to develop a flexible macroalgae cultivation modeling system that integrates an open-source regional ocean model with a fine-scale hydrodynamic model capable of simulating forces and nutrient flows in various farming systems. Macroalgae farming systems will require significant capital. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production within the context of specific ocean regions. The UC Irvine team expects to provide an improved set of tools for locating optimal macroalgae farm sites, evaluating farm designs for structural soundness under rough ocean conditions, assessing new macroalgae cultivation techniques and operational procedures to maximize productivity. Their model will be capable of resolving turbulent fluxes within a canopy and hydrodynamic stresses on structures at sub-meter resolution. It will also feature a macroalgae growth model that accounts for biological processes such as the enhancement of nutrient uptake due to the motion of the plant canopy and waves. Once completed, the modeling tool will be able to assess optimal sites for macroalgae farms on the U.S. West coast, while guiding operational decisions to maximize yield. The tool will also evaluate the productivity and structural performance of a range of macroalgae farm designs and cultivation techniques, and predict the impact on coastal ecosystems. Potential Impact: If successful, MARINER projects strive to develop the tools needed to allow the United States to become a world leader in marine biomass production for multiple important applications, including the production of biofuels. |