Project Detail |
"Gaining detailed control over chemical reactions has always been a chemists dream. Quantum coherent control has been pursuing this dream by using specially tailored light fields to control chemical reactions on an atomistic level. With the advancement of cavity quantum electrodynamics and its recent application to molecules, using the quantum properties of light to control photo-chemistry has come into reach. Recent, ground breaking experiments have show that one can utilize the vacuum field of an optical nano-resonator to significantly modify the potential energy landscape and thus its photo-chemistry. The underlying effect is the formation of so called ""dressed states"", which are created when the quantized radiation field mode couples to a molecular electronic transition. In the resulting coupled light-matter system the molecular and the photonic degrees of freedom are heavily mixed. While this effect is well understood for atomic samples, it is not yet fully understood for molecules. The introduction of the nuclear degrees of freedom requires new theoretical frameworks. This effect can be used to modify reaction pathways of chemical and photo-chemical reactions. This opens a wide range of possibilities to engineer novel types of light driven catalysts. The major objectives of this proposal are to advance the theoretical understanding of the underlying mechanisms, to build a suitable tool chest for numerical simulations, to use the insight and tools to propose new photo-chemical applications, and to close the gap between theory and experiment. We will theoretically investigate possibilities to optimize organic solar cells, and the photo catalytic schemes for environmentally relevant molecules." |