Project Detail |
The current proposal aims to demonstrate the potential of thin film metallic glasses as novel tribological coating materials, used to improve the performance of tools, dies, and moulds in many different applications. These coatings are characterized by a high hardness, as well as high wear- and oxidation resistance. Thin film metallic glasses are promising materials to fulfil these demands. Due to their amorphous structure they have excellent mechanical properties such as high specific strengths and large elastic limits above 2%. The absence of defects like grain boundaries also makes them resistant against corrosion and wear. In comparison to conventional protective coatings based on transition metal nitrides, thin film metallic glasses have the added benefit of a relatively low elastic modulus, making them tougher and able to accommodate a certain degree of substrate deformation without delaminating. In this study, amorphous WZrB coatings will be deposited by a combinatorial dc magnetron sputter process from three elemental targets onto commercially relevant substrate materials. The primary refractory element W provides the necessary temperature stability for tribological applications, while Zr and B have both been shown to enhance the glass forming ability in W-based alloys. Experimental activities will be supported by our company partner CERATIZIT Austria GmbH, a global leader in the hard metal tooling industry. The thin film metallic glass/substrate systems will be characterized with state-of-the-art methods in terms of their chemical, mechanical, thermal, and tribological properties. Results will be critically evaluated regarding the up-scaling potential of developed processes and materials systems from laboratory to industrial conditions. |