Project Detail |
Many elements of an offshore wind farm become more expensive as depth increases: mooring, anchoring and dynamic cables are the most obvious. However, deep water areas also pose additional challenges for installation and O&M strategies. FLOTANT project aims to develop an innovative and integrated Floating Offshore Wind solution, optimized for deep waters (100-600m) and to sustain a 10+MW wind turbine generator, composed by: a mooring and anchoring system using high performance polymers and based on Active Heave Compensation to minimise excursions, a hybrid concrete-plastic floater and a power export system with long self-life and low-weight dynamic cables. The project includes enhanced O&M strategies, sensoring, monitoring and the evaluation of the techno-economic, environmental, social and socio-economic impacts.
The prototypes of the novel mooring, anchoring and dynamic cable components, and a scaled model of the hybrid offshore wind floating platform will be tested and validated within the scope of the project. Three relevant environments have been selected to perform the tests: MARIN basin for global performance under controlled conditions; the Dynamic Marine Component Test facility (DMaC-UNEXE) for large scale prototypes tests; and PLOCAN Marine Test Site, for the characterisation of novel materials under real seawater conditions.
An expected 60% reduction in CAPEX and 55% in the OPEX by 2030 will be motivated by FLOTANT novel developments including additional sectorial reductions due to external technology improvements. Overall FLOTANT solution, will allow an optimisation of LCOE reaching values in the range of 85-95 €/MWh by 2030. |