Subscribe     Pay Now

Norway Project Notice - Cosmoglobe -- Mapping The Universe From The Milky Way To The Big Bang


Project Notice

PNR 30627
Project Name Cosmoglobe -- Mapping The Universe From The Milky Way To The Big Bang
Project Detail In the aftermath of the high-precision Planck and BICEP2 experiments, cosmology has undergone a critical transition. Before 2014, most breakthroughs came as direct results of improved detector technology and increased noise sensitivity. After 2014, the main source of uncertainty will be due to astrophysical foregrounds, typically in the form of dust or synchrotron emission from the Milky Way. Indeed, this holds as true for the study of reionization and the cosmic dawn as it does for the hunt for inflationary gravitational waves. To break through this obscuring veil, it is of utmost importance to optimally exploit every piece of available information, merging the worlds best observational data with the worlds most advanced theoretical models. A first step toward this ultimate goal was recently published as the Planck 2015 Astrophysical Baseline Model, an effort led and conducted by myself. Here I propose to build Cosmoglobe, a comprehensive model of the radio, microwave and sub-mm sky, covering 100 MHz to 10 THz in both intensity and polarization, extending existing models by three orders of magnitude in frequency and a factor of five in angular resolution. I will leverage a recent algorithmic breakthrough in multi-resolution component separation to jointly analyze some of the worlds best data sets, including C-BASS, COMAP, PASIPHAE, Planck, SPIDER, WMAP and many more. This will result in the best cosmological (CMB, SZ, CIB etc.) and astrophysical (thermal and spinning dust, synchrotron and free-free emission etc.) component maps published to date. I will then use this model to derive the worlds strongest limits on, and potentially detect, inflationary gravity waves using SPIDER observations; forecast, optimize and analyze observations from the leading next-generation CMB experiments, including LiteBIRD and S4; and derive the first 3D large-scale structure maps from CO intensity mapping from COMAP, potentially opening up a new window on the cosmic dawn.
Funded By European Union (EU)
Sector Science & Technology
Country Norway , Western Europe
Project Value NOK 1,999,382

Contact Information

Company Name UNIVERSITETET I OSLO
Address Problemveien 5-7 0313 Oslo
Web Site https://cordis.europa.eu/project/rcn/221446/factsheet/en

Tell us about your Product / Services,
We will Find Tenders for you